Shot-to-Shot Variation in Muzzle Velocity and Ballistic Coefficient

by
posted on August 20, 2020
** When you buy products through the links on our site, we may earn a commission that supports NRA's mission to protect, preserve and defend the Second Amendment. **
new-project-3.jpg (1)

We often talk about Applied Ballistics here at Shooting Sports USA. That's for a good reason—founder Bryan Litz and company have developed a self-described "ecosystem of products" on the cutting edge, encompassing books, software, training and more. What's more is the company shares informative articles on its website about internal, external and terminal ballistics that can be helpful to competitive shooters. 

Below is an article penned by Litz about shot-to-shot variation in Muzzle Velocity and Ballistic Coefficient.


Shot-to-Shot Variation in Muzzle Velocity and Ballistic Coefficient
By Bryan Litz

Most long-range shooters are aware that they have variation in Muzzle Velocity (MV) around the average. This can be measured with a chronograph, and the goal is to minimize the variation so your shot group doesn’t grow too tall at long range (fast shots hit higher than slow shots). The data in Figure 1 is an example of how your vertical dispersion will grow at long range for three different levels of Standard Deviation (SD) in MV.[1]

Applied Ballistics data
Figure 1. How MV SD causes vertical dispersion at long range.


Muzzle Velocity causing vertical dispersion at long range is common knowledge, but what about BC variation from shot-to-shot? Most shooters don’t have the means to measure the BC of each shot, and don’t know what the SD of the BC is for their ammunition.

Using Doppler radar, it’s possible to measure the BC of each individual shot, and determine the SD of the BC, as well as the vertical dispersion that results at long range. See the data in Figure 2 below.

Standard Deviation of Ballistic Coefficient | .300 Norma 215-grain Berger Hybrid at 3000 f.p.s.
Figure 2. SD of BC causes vertical dispersion at long range as well.


We can make a couple of observations about this data:

  • MV SD causes more vertical dispersion beginning at shorter range, whereas the effect of BC variation isn’t much of a factor until longer range, but then grows more rapidly.
  • A MV SD of 5 fps has a comparable effect on vertical dispersion as 0.5 percent SD in BC.
  • A MV SD of 10 fps has a comparable effect on vertical dispersion as 1.0 percent SD in BC.
  • A MV SD of 20 fps has a comparable effect on vertical dispersion as 2.0 percent SD in BC.


After many Doppler radar tests, we’ve found that BC SDs can be in the 0.4-0.6 percent range for very high-quality bullets, bullets that have been pointed, and/or meplat trimmed for uniformity. Typical bullets have BC SDs around 0.8-1.2 percent. On occasion, some bullets exhibit excessively high BC SDs in the range of 1.5-2.0 percent or more. These are typically the very long bullets, or ones with stability issues.

In Figure 3, the radar data output shows how the BC can be different on every shot. For this particular group, the MV SD is 5 fps, which is very good. The SD in BC is measured to be 0.00111. This equates to: 0.00111/0.368 = 0.3 percent, which is also very good. In fact, the Berger 0.308-cal. 215-grain hybrid bullets were pointed in this test, which increases the average BC, as well as the consistency of the BC. This is highly consistent ammunition that will certainly minimize vertical dispersion at long range.

Applied Ballistics radar data
Figure 3. Applied Ballistics radar data showing Average, ES, and SD of MV and BC at various ranges.


Thanks to Applied Ballistics, LLC for allowing us to share this article. Learn more at appliedballisticsllc.com.

[1] Standard Deviation (SD) and Extreme Spread (ES) are related as follows: 95 percent of shots will be within +/-2 Standard Deviations of the average. For example, if the average MV is 3,000 fps, and the SD is 10 fps, 95 percent of shots (that’s 19 out of 20) will be between 2,980 fps and 3,020 fps, and ES of 40 fps. In other words, ES is typically four times the SD for a 20-shot group.


See more: How The Kestrel Became The iPhone Of Weather Meters

Latest

Mullers ARC July2025 1
Mullers ARC July2025 1

NRA Announces Dianna & Ryan Muller As Brand Ambassadors For America’s Rifle Challenge

NRA announces Dianna & Ryan Muller as brand ambassadors for America’s Rifle Challenge program, promoting AR-15 marksmanship, safety and training.

Eley’s New Trial Packs Let Competition Shooters Find Their Perfect Rimfire Match Ammo

Eley launches trial ammo packs to help shooters test and match precision .22 LR rounds to their firearms.

Ava Downs Captures Junior Olympic Trap Title On Home Turf

Hillsdale’s Ava Downs takes gold in women’s trap at the 2025 USA Shooting Junior Olympic Championships hosted at the Halter Center.

Brandon Powell Claims 8th Georgia State Sporting Clays Title

Brandon Powell wins his eighth Georgia State Sporting Clays Championship, continuing his dominance with multiple top finishes at the 2025 tournament.

Vincent Hancock Claims 30th ISSF Medal As Team USA Dominates 2025 Lonato World Cup

Team USA shines at 2025 ISSF Lonato World Cup with golds from Vincent Hancock and Sam Simonton, plus silver for Dania Vizzi.

Jon Shue Clinches Third Straight NRA National Precision Pistol Championship Title

Shue continues his dominant streak in bullseye pistol shooting after 2025 NRA National Precision Pistol Championship victory.

Interests



Get the best of Shooting Sports USA delivered to your inbox.